

# PERCEIVED INFLUENCE OF LECTURERS ATTITUDES TOWARDS USE OF ARTIFICIAL INTELLIGENCE ON INSTRUCTIONAL DELIVERY IN PUBLIC UNIVERSITIES IN RIVERS STATE

Osugi, Catherine U. PhD<sup>1</sup> & Chinene Gloria IWU<sup>2</sup>

<sup>1,2</sup> Department of Educational Management, Rivers State University

## Article Info

### Article history:

Received: 06/09/2025

Accepted: 10/09/2025

Published: 25/09/2025

### Keywords:

Artificial Intelligence, Instructional Delivery, Lecturers' Skepticism, Lecturers' Enthusiasm and Fear of Job Displacement.

## ABSTRACT

The study examined perceived influence of lecturers' attitudes towards use of Artificial Intelligence on instructional delivery in public universities in Rivers State. Three objectives and three research questions were raised to guide the study while three null hypotheses were formulated and tested at 0.05 level of significance. The researcher adopted the descriptive survey research design for the study. The population of the study was 3,525 staff of public universities in Rivers State which consisted of 1385 academic staff of University of Port Harcourt, 1705 academic staff of Rivers state university and 435 academic staff of Ignatius Ajuru University of Education. The sample size for this study consists of 359 respondents, selected from a total population of 3,525 academic staff across the three public universities in Rivers State. A multi-stage sampling technique was employed to ensure proportional representation across the universities. Firstly, the sample was determined using the Taro Yamane formula. The instrument for data collection in this study was a researcher-designed questionnaire titled Perceived Influence of Lecturers' Attitudes towards Artificial Intelligence on Instructional Delivery Questionnaire (PILATAIIDQ). The reliability coefficients of 0.81, 0.77 and 0.81 were obtained for the various clusters using Cronbach Alpha method statistics which showed the instrument was reliable. Mean and standard deviation were used to answer the research questions, while the hypotheses were tested using independent t-test at 0.05 level of significance. The findings of the study revealed that lecturers in public universities in Rivers State exhibit a high extent of skepticism towards Artificial Intelligence, which influences their instructional delivery. It was recommended that Public universities should organize structured awareness campaigns to address skepticism towards Artificial Intelligence.

### Corresponding Author:

Chinenye Gloria IWU,

Department of Educational Management, Rivers State University

## INTRODUCTION

Education is universally acknowledged as the bedrock of national development and individual transformation. It is a deliberate and systematic process through which individuals acquire knowledge, skills, values, and competencies essential for meaningful participation in societal progress. Education facilitates the development of intellectual capacity, critical reasoning, and innovation, all of which are necessary for solving contemporary social, economic, and technological challenges. In higher institutions, particularly public universities, education takes on the added responsibility of producing skilled manpower, fostering academic research, and advancing national development goals. Central to the realization of these objectives is the effectiveness of instructional delivery the process by which lecturers transmit knowledge and skills to students through teaching and learning activities.

Instructional delivery in public universities encompasses a wide range of academic activities including classroom teaching, laboratory sessions, academic advising, and curriculum implementation. The effectiveness of these activities depends largely on the pedagogical strategies, instructional tools, and the personal commitment of lecturers. In recent years, there has been a growing emphasis on improving instructional delivery through the integration of technology, including the use of digital learning platforms, multimedia presentations, and interactive software. However, the emergence of Artificial Intelligence (AI) has introduced a new dimension to instructional delivery, with the potential to redefine how lecturers engage with students and

manage the teaching-learning process. In the context of public universities in Rivers State, where student populations are increasing and educational resources are often stretched, the integration of AI offers a promising avenue for enhancing instructional quality, access, and flexibility. Yet, the degree to which this promise is realized depends significantly on the attitudes of lecturers toward AI.

Artificial Intelligence refers to the capability of machines and computer programs to perform tasks that typically require human intelligence, such as learning, reasoning, problem-solving, perception, and language understanding (Okonkwo, 2022). In the educational sector, AI has found applications in various areas such as personalized learning systems, intelligent tutoring systems, automated assessment tools, virtual teaching assistants, plagiarism detection, and predictive analytics for student performance. These tools can significantly reduce lecturers' administrative burden, improve students' learning outcomes, and promote more engaging classroom interactions. AI can also provide real-time feedback, identify learners' needs, and adapt instructional content accordingly. Nonetheless, the extent to which these benefits are harnessed in public universities depends not only on the availability of the technology but also on the willingness and readiness of lecturers to embrace and effectively use such innovations in their instructional practices (Ibiamu, 2023).

The perceived influence of lecturers' attitudes toward AI on instructional delivery in public universities is crucial, as it determines the extent to which AI can be effectively implemented

in the classroom. Instructional delivery is shaped by how lecturers incorporate AI tools into their teaching practices. If lecturers view AI positively and are willing to embrace it, their instructional delivery will likely improve, with more personalized learning experiences and greater efficiency in teaching. Conversely, negative attitudes towards AI can limit its impact, resulting in traditional and less engaging teaching methods.

A key attitude that shapes lecturers' engagement with AI is skepticism. Skepticism involves doubt or distrust in the credibility, reliability, or effectiveness of AI technologies in educational contexts. Some lecturers perceive AI as an overhyped innovation that cannot replicate the human elements of teaching such as empathy, classroom presence, and contextual understanding. They question whether AI systems can effectively engage students or accommodate the complexity of real-life classroom dynamics (Akah, 2021). In many public universities where traditional, face-to-face teaching is still predominant, skeptical lecturers may be less inclined to integrate AI into their instructional strategies. This skepticism, if left unaddressed, can hinder the adoption of potentially beneficial AI applications, thus limiting innovation in teaching and learning.

On the other hand, there exists a group of lecturers identified as tech enthusiasts. These individuals demonstrate high levels of interest, curiosity, and optimism toward new and emerging technologies, including AI. They are usually early adopters who are eager to explore AI tools to enhance their instructional practices. Such lecturers often perceive AI not as a threat but as a catalyst for innovation, capable of simplifying instructional tasks, promoting learner autonomy, and increasing access to quality education (Enyindah, 2020). In public universities where tech enthusiasts are actively engaged, there is usually a higher level of experimentation with tools such as AI-powered learning analytics, virtual labs, and adaptive learning platforms. These lecturers often serve as change agents who inspire their colleagues to explore new teaching approaches and bridge the digital divide in higher education.

A contrasting attitude that poses a significant challenge is the fear of job displacement. This fear stems from the perception that AI could replace human lecturers or render their roles redundant. Some lecturers believe that the increasing reliance on AI might lead to a devaluation of their professional expertise and job insecurity (Eneanya, 2022). Such fears are particularly strong in environments where technological changes are introduced without proper communication or stakeholder involvement. In public universities where employment conditions are often uncertain, fear of job loss may cause lecturers to resist AI adoption, not necessarily because they question its functionality, but because they see it as a potential threat to their livelihood. This fear-based resistance can have far-reaching implications for the digital transformation agenda of public universities.

Several scholars have investigated the intersection of lecturers' attitudes towards Artificial Intelligence (AI) and its influence on instructional delivery, though research specific to public universities in Rivers State is limited. Sulaimon's (2021) explored university lecturers' attitudes towards AI integration in teaching and learning, focusing on Nigerian universities. The study found a divide between lecturers who embraced AI for its potential to enhance teaching methods and those who were skeptical, concerned about the possibility of AI replacing human interaction in education. While some lecturers acknowledged the administrative benefits and potential for personalized learning, others feared the negative impact of AI on their professional roles. However, the study primarily examined general attitudes toward AI and did not delve into how these attitudes specifically influenced instructional delivery or how institutional factors shaped these perceptions.

Chukwu (2020) investigated the challenges and opportunities associated with AI adoption among lecturers in Nigerian public universities. The study identified barriers such as a lack of training, insufficient technological infrastructure, and fears of obsolescence among lecturers. While the study highlighted these obstacles, it did not focus on the direct influence of lecturers' attitudes on

instructional delivery or the role of institutional support in shaping these attitudes. Moreover, the study's broader scope, covering universities across Nigeria, did not specifically address the unique challenges faced by universities in Rivers State regarding AI integration in education.

The gap identified in these studies is the lack of focused research on the perceived influence of lecturers' attitudes towards AI on instructional delivery in public universities in Rivers State. While there have been general studies on AI integration in Nigerian universities, little research has been conducted specifically in public universities in Rivers State where distinct challenges such as limited infrastructure and varying levels of digital literacy among lecturers. Again, existing studies have not fully explored how specific attitudes whether skepticism, enthusiasm, or reluctance directly influence the quality and effectiveness of instructional delivery. This study aims to address this gap by examining the perceived influence of lecturers' attitudes towards AI on instructional delivery in public universities in Rivers State. By understanding the factors that shape lecturers' attitudes, this study will provide directives into how AI technologies can be better integrated into teaching practices in Rivers State's public universities, ultimately improving instructional delivery and student outcomes.

## Statement of the Problem

Lecturers in public universities are expected to embrace emerging technologies like Artificial Intelligence (AI) to enhance the quality of their instructional delivery. Ideally, AI should serve as a tool to support more effective, personalized, and engaging teaching practices in the classroom. However, in recent times, there has been a growing concern that many lecturers in public universities in Rivers State are either indifferent or show resistance towards adopting AI technologies in their teaching processes.

Several capacity-building workshops, sensitization programs, and technology training initiatives have been organized by institutions and stakeholders to improve lecturers' technological awareness and usage, including the use of AI-based tools. Some universities have also provided digital infrastructure and encouraged technology integration in teaching. Despite these efforts, there is still little evidence of wide adoption or visible improvement in AI-supported instructional delivery among many lecturers. Rather than declining, the hesitation and lukewarm attitudes of some lecturers towards AI use seem to persist or even worsen in some departments.

This resistance or poor attitude towards AI may be affecting the effectiveness of instructional delivery, slowing down innovation in teaching, and limiting the academic exposure of students in a digital-driven world. As a result, students may be receiving less engaging, less interactive, and less personalized instruction than they should, and this may have negative implications for learning outcomes. This situation has raised concern over whether lecturers' attitudes towards AI are significantly influencing how well they deliver instruction in classrooms. If left unaddressed, the problem may widen the digital gap in higher education and hinder the global competitiveness of graduates from Rivers State public universities.

Although previous researchers have investigated AI adoption in education broadly, there is still limited understanding of how lecturers' personal attitudes whether positive or negative specifically influence their instructional delivery practices within the public university context of Rivers State. Most studies have not focused on the perception-based influence or examined it in this geographical and institutional setting. It is because of this gap and the persistent nature of the problem that this study seeks to find out: What is the perceived influence of lecturers' attitudes towards use of Artificial Intelligence on instructional delivery in public universities in Rivers State?

## Purpose of the Study

The purpose of the study was to investigate perceived influence of lecturers' attitudes towards use of Artificial Intelligence on instructional delivery in public universities in Rivers State. Specially, the study sought to;

1. Investigate the extent to which lecturers' skepticism towards use of Artificial Intelligence influences instructional delivery in public universities in Rivers State.
2. Ascertain the extent to which lecturers' enthusiasm for Artificial Intelligence influences instructional delivery in public universities in Rivers State.
3. Determine the extent to which fear of job displacement as a result of Artificial Intelligence influences lecturers' instructional delivery in public universities in Rivers State.

## Research Questions

The following research questions guided the study;

1. To what extent does lecturers' skepticism towards Artificial Intelligence influence instructional delivery in public universities in Rivers State?
2. To what extent does lecturers' enthusiasm for Artificial Intelligence influence instructional delivery in public universities in Rivers State?
3. To what extent does fear of job displacement as a result of Artificial Intelligence influence lecturers' instructional delivery in public universities in Rivers State?

## Hypotheses

The following null hypotheses were tested at 0.05 level of significance;

1. There is no significant difference in the mean ratings of male and female lecturers on the extent skepticism towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.
2. There is no significant difference in the mean ratings of male and female lecturers on the extent enthusiasm towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.
3. There is no significant difference in the mean ratings of male and female lecturers on the extent fear of job displacement due to Artificial Intelligence influences instructional delivery in public universities in Rivers State.

## Theoretical Review

The theory that guided this Theory of Planned Behavior (TPB)

### Theory of Planned Behavior (TPB), – Ajzen 1991

The Theory of Planned Behavior (TPB) was propounded by Icek Ajzen in 1991. The theory provides a framework for understanding how individuals' attitudes, social pressures, and perceived control over their actions influence their intentions and actual behaviors. TPB is an extension of the earlier Theory of Reasoned Action (TRA), with the addition of Perceived Behavioral Control to account for factors that may limit voluntary action.

#### The theory is built on three major constructs:

- Attitude Toward the Behavior: This refers to the degree to which an individual has a favorable or unfavorable evaluation of the behavior in question. In the context of this study, it relates to whether lecturers believe the use of Artificial Intelligence (AI) in instructional delivery is beneficial or harmful.
- Subjective Norms: This involves perceived social pressure to perform or not perform the behavior. For lecturers, this could include pressure from colleagues, institutional leadership, or broader academic communities to adopt or reject AI tools.

- Perceived Behavioral Control: This reflects the extent to which an individual feels capable of performing the behavior, considering both internal and external constraints. In this case, it refers to whether lecturers feel they have the skills, knowledge, and institutional support to effectively integrate AI into their teaching.

These three components collectively shape an individual's behavioral intention, which is the strongest predictor of actual behavior. When lecturers have a positive attitude toward AI, feel that important others expect them to use it, and believe they have the ability to use it effectively, they are more likely to adopt AI in their instructional practices.

In this study, the Theory of Planned Behavior is relevant because it explains the psychological mechanisms through which lecturers' attitudes toward Artificial Intelligence influence their instructional delivery. The theory highlights that beyond simply liking or disliking AI, lecturers' actions are also shaped by the expectations of their professional environment and their confidence in their ability to use the technology. For example, a lecturer who is enthusiastic about AI but lacks training or institutional support may still avoid using it due to low perceived behavioral control.

The theory also offers insights into how public universities in Rivers State can enhance AI adoption by targeting each of the three components: improving lecturers' attitudes through awareness programs, reinforcing positive subjective norms by recognizing AI users as role models, and strengthening perceived behavioral control through hands-on training and infrastructural support.

Therefore, the Theory of Planned Behavior serves as a comprehensive framework for understanding and predicting lecturers' behavioral intentions toward AI integration. It aligns closely with the variables of this study such as skepticism, enthusiasm, resistance, and fear and helps explain how these attitudes translate into actual classroom practices. By leveraging TPB, university management can better design interventions that promote the effective use of AI for improved instructional delivery.

## 2.2 Conceptual Review

### Concept of Artificial Intelligence

Artificial Intelligence (AI) has become one of the most transformative forces in the modern world, redefining how societies think, act, communicate, and solve problems. Within the scope of education, AI refers to the deployment of computer systems or technologies designed to simulate human intelligence, enabling machines to perform tasks that typically require human cognition, such as learning, reasoning, problem-solving, and decision-making (Okonkwo, 2022). The introduction of AI into education has created a new paradigm where teaching and learning are no longer restricted to physical classrooms or dependent solely on human instructors. Instead, AI provides the opportunity for real-time personalized learning, intelligent content delivery, and efficient administrative processes, thus revolutionizing instructional delivery.

Artificial Intelligence (AI) is increasingly being applied in the education sector to enhance supervision, improve administrative efficiency, and support instructional delivery. AI tools are now used for teacher performance evaluation, monitoring classroom activities, and streamlining administrative decision-making processes. These applications not only reduce the workload of lecturers and administrators but also ensure data-driven interventions that can improve teaching and learning outcomes. Nwuke and Annette (2025) emphasized that AI, when effectively utilized in school supervision, promotes transparency, timely feedback, and accountability in the education system, ultimately leading to improved instructional practices and better student performance. However, they also cautioned that the successful adoption of AI depends on adequate infrastructure, digital literacy, and institutional support to prevent resistance and misuse.

Lecturers' prior exposure to digital learning environments—such as Zoom, Google Classroom, and Canvas—can positively influence their openness to integrating AI into instructional

practices. Osuji (2023) demonstrated that in the context of the National Open University, Port Harcourt Centre, students' academic performance was significantly tied to the effective use of these digital platforms, suggesting that familiarity with such tools may shape attitudes toward more advanced technologies like AI.

The relevance of AI in education is anchored in its capacity to process and analyze vast amounts of data, identify patterns, and offer insights that were previously inaccessible or time-consuming for human educators to generate. In Nigerian public universities, where overcrowded classrooms, inadequate facilities, and a shortage of qualified personnel continue to hinder quality education delivery, AI offers a viable solution to many of these challenges (Diri, 2023). For instance, AI can be deployed through intelligent tutoring systems that provide students with individualized feedback and adaptive learning experiences based on their unique learning patterns. Unlike the traditional one-size-fits-all approach to instruction, these AI-powered systems continuously assess student performance and adjust content accordingly, enabling learners to progress at their own pace while still meeting academic objectives (Ibiamu, 2023). This is particularly useful in disciplines that demand a high level of abstraction or visualization, such as mathematics, engineering, and the sciences, where AI can be used to simulate complex concepts that are difficult to convey through static teaching methods.

### **Concept of Instructional Delivery**

Instructional delivery, in its broadest sense, refers to the deliberate methods, interactions, and pedagogical techniques employed by educators to transmit knowledge, values, and competencies to learners in a structured and purposeful manner. It is a cornerstone of educational effectiveness, as it determines how well the intended curriculum content is transformed into meaningful learning experiences for students. In the Nigerian university context, instructional delivery is particularly vital due to the diverse backgrounds, learning styles, and expectations of students enrolled in public higher institutions. Effective instructional delivery bridges the gap between curriculum intent and student understanding by aligning content with appropriate strategies and ensuring that the learning environment is conducive for academic engagement (Obasi, 2019).

At its core, instructional delivery encompasses several dimensions: the selection of instructional materials, the sequencing of content, the choice of teaching methods, the use of evaluation techniques, and the management of the classroom environment. These dimensions are interdependent and require a high level of intentionality and professional judgment from the educator. In a typical Nigerian university, where student populations are rapidly increasing and resources are often stretched thin, the lecturer's ability to effectively deliver instruction is not only a matter of pedagogical skill but also of adaptability, creativity, and resilience (Ikwut, 2020). A lecturer must balance academic rigor with clarity, and theoretical depth with practical relevance, while navigating infrastructural limitations and diverse student needs.

In recent years, the traditional model of instructional delivery primarily dominated by didactic lecturing has been increasingly criticized for its inability to foster critical thinking, innovation, and student-centered learning. This model often limits student participation and promotes surface-level understanding, as it emphasizes content coverage over comprehension. In contrast, contemporary approaches advocate for more interactive and flexible strategies such as discussion-based learning, problem-solving activities, flipped classrooms, and case-based instruction (Omowunmi, 2021). These methods position students as co-constructors of knowledge, encouraging them to actively engage with course material and apply it to real-life contexts. However, the adoption of such approaches in Nigerian public universities remains uneven due to a combination of systemic constraints and lecturer attitudes.

Lecturers' perception of their instructional roles plays a critical part in shaping delivery methods. Some view their primary responsibility as content transmitters, while others see themselves as facilitators of learning who guide students to discover knowledge independently. The former mindset often results in

static instructional delivery, while the latter encourages dynamism, innovation, and responsiveness to student feedback. For example, a lecturer who incorporates visual aids, digital content, student peer reviews, or formative assessments throughout the course reflects a higher level of instructional engagement than one who limits instruction to monologues (Zakka, 2022). This distinction is important because students in today's world are more technologically inclined, inquisitive, and exposed to global learning environments through the internet and digital media. Instructional delivery that fails to recognize and adapt to these changes risks becoming obsolete.

### **Lecturers' Skepticism towards Artificial Intelligence**

Lecturers' skepticism towards Artificial Intelligence (AI) significantly shapes the integration and effectiveness of instructional delivery in public universities, particularly in Rivers State, Nigeria. Skepticism in this context refers to a critical or doubtful attitude held by lecturers regarding the reliability, appropriateness, or pedagogical value of AI in the teaching and learning process. While such skepticism can serve as a cautionary check against the hasty adoption of technology, when it becomes entrenched or uninformed, it often acts as a formidable barrier to innovation in instructional delivery. This attitude among lecturers arises from several underlying concerns, including mistrust in machine-generated intelligence, fear of pedagogical redundancy, data privacy issues, and doubts about the ability of AI to authentically replicate the human elements of teaching (Emejuru, 2020).

One of the central reasons for skepticism is the belief that AI lacks the emotional depth and intuitive responsiveness required for effective teaching. Many lecturers argue that instruction is not merely about content dissemination but also involves mentorship, emotional support, spontaneous interaction, and culturally relevant communication that machines cannot replicate (Okoroma, 2021). These concerns are especially pronounced in disciplines where context, dialogue, and ethical reasoning are core to learning such as in the humanities, education, and the social sciences. Lecturers in these fields often express doubts about AI's ability to evaluate nuanced assignments, interpret student behaviors, or respond empathetically to learners' personal challenges. Consequently, skepticism emerges not from mere aversion to technology but from a deeper conviction that teaching is a human-centered profession that cannot be fully mechanized (Ogon, 2022). This skeptical attitude is further reinforced by a lack of familiarity with AI technologies. Many lecturers in public universities in Rivers State have limited exposure to AI tools, having received minimal or no training in digital pedagogy. Without adequate digital literacy, such lecturers are more likely to perceive AI systems as opaque, overly complex, or intimidating. However, lecturers' initial exposure to online instructional platforms, such as Zoom, could moderate their attitudes toward AI integration (Nwuke & Nwanyanwu, 2022).

The unfamiliarity breeds suspicion, especially when new technologies are introduced without participatory planning or clear communication from university management. In some cases, AI is perceived as an external imposition rather than a pedagogical tool co-developed with academic input, thereby increasing resistance among staff (Dabor, 2021). This scenario is exacerbated by infrastructural deficits such as unreliable electricity, weak internet connectivity, and lack of access to up-to-date digital devices which reinforce lecturers' perception that AI is impractical or incompatible with the local educational environment.

### **Lecturers' Enthusiasm for Artificial Intelligence**

Lecturers' enthusiasm for Artificial Intelligence (AI) significantly influences instructional delivery in public universities, particularly in regions like Rivers State, where institutions are increasingly exploring digital innovations to improve teaching and learning outcomes. Enthusiasm in this context refers to a lecturer's positive disposition, openness, curiosity, and proactive attitude toward the adoption and application of AI technologies in academic environments. This enthusiasm serves as a driving force for pedagogical transformation, especially when supported by institutional frameworks that encourage technological advancement in education. Lecturers who exhibit enthusiasm for

AI are often early adopters who experiment with emerging tools, adapt their teaching methods to evolving technologies, and inspire their peers to do the same (Ibelegbu, 2020).

Such lecturers perceive AI not as a threat to traditional teaching methods but as a complement that enhances instructional effectiveness, personalization, and student engagement. They are usually characterized by their willingness to explore intelligent tutoring systems, AI-driven assessment platforms, virtual labs, and adaptive learning technologies that respond to individual student needs. In public universities where student populations are large and resources are stretched thin, these tools offer a way to manage workloads while ensuring that students receive timely, data-informed feedback on their learning progress. Enthusiastic lecturers thus serve as catalysts for reform, often pioneering innovative teaching practices that reshape how knowledge is delivered and received (Omodara, 2022).

Enthusiasm for AI among lecturers is often linked to their previous exposure to technology, their confidence in using digital tools, and their personal belief in the value of continuous learning and innovation. Those who embrace AI tend to integrate it creatively into lesson planning, content delivery, and assessment, using applications such as AI-based question banks, automated grading systems, chatbots for student support, and analytics dashboards for tracking academic performance. Through these innovations, instructional delivery becomes more interactive, efficient, and data-driven, allowing lecturers to better identify learning gaps and tailor their interventions accordingly (Adebajo, 2021). As a result, students benefit from a more engaging and responsive learning environment, which enhances their academic experience and outcomes.

Moreover, enthusiastic lecturers often contribute to building a culture of technological acceptance within their departments and faculties. Their success stories, willingness to mentor others, and visible improvements in student engagement create a ripple effect, influencing colleagues who may initially be hesitant or skeptical. In this way, their enthusiasm does not only affect their personal instructional delivery but also contributes to institutional change. Departments with a high number of enthusiastic lecturers often record higher rates of AI integration, greater student satisfaction, and increased experimentation with blended and hybrid teaching models (Ikwuano, 2022).

### **Fear of Job Displacement as a Result of Artificial Intelligence influences lecturers' Instructional Delivery**

Fear of job displacement as a result of Artificial Intelligence (AI) has emerged as a significant psychological and professional concern among lecturers in public universities, and it profoundly influences their approach to instructional delivery. In the context of Nigerian institutions, particularly public universities in Rivers State, where employment is often viewed as a rare and valuable economic opportunity, any perceived threat to job security is likely to generate strong resistance and anxiety. This fear is rooted in the growing discourse around automation and its potential to replace human roles, including those in education. Lecturers who view AI as a tool capable of performing tasks traditionally assigned to educators such as grading, content delivery, student assessment, and even curriculum planning may feel that their relevance is being undermined, thereby affecting their motivation and willingness to integrate technology into their instructional practices (Iwuamadi, 2020).

This apprehension is not without basis. AI has demonstrated the capacity to automate various instructional tasks through intelligent tutoring systems, auto-grading applications, chatbots for student queries, and virtual teaching assistants. In highly digitized educational systems, these tools can reduce the workload of human instructors, but they may also inadvertently minimize direct teacher-student interactions. For some lecturers, especially those who are not technologically inclined, the growing prominence of AI is interpreted as a precursor to replacement rather than enhancement. This perception fosters defensive attitudes, where lecturers either reject or reluctantly engage with AI tools, thus limiting the potential for pedagogical innovation (Ejimabo, 2021).

Moreover, in an academic environment characterized by unstable employment policies, delayed promotions, and contract-based teaching arrangements, many lecturers view AI adoption as a move that may favor cost-cutting over human resource development. This belief leads to the assumption that administrators may eventually prefer AI systems over employing additional academic staff. As a result, lecturers may consciously or unconsciously resist incorporating AI into their teaching, fearing that demonstrating the efficacy of these tools might accelerate institutional decisions that prioritize machines over people (Okolo, 2020). Such fear-driven resistance can stagnate technological progress within universities, as even the most beneficial AI interventions may be perceived with suspicion rather than embraced for their transformative potential.

The influence of this fear on instructional delivery is multifaceted. First, lecturers who are concerned about job displacement may refrain from exploring or experimenting with AI-based tools, leading to a continued reliance on traditional, manual teaching methods that may not effectively engage 21st-century learners. Second, these lecturers might discourage colleagues or junior academics from adopting AI, thereby influencing broader departmental or institutional attitudes toward technology use in education. Third, their teaching may lack the innovation, personalization, and adaptability that AI-enabled instruction offers, resulting in missed opportunities to enhance student learning outcomes through data-driven insights and interactive digital experiences (Chika, 2022).

## **Methodology**

This study adopted a descriptive survey design. The population of the study was 3,525 staff of public universities in Rivers State which consisted of 1385 academic staff of University of Port Harcourt, 1705 academic staff of Rivers state university and 435 academic staff of Ignatius Ajuru University of Education. The sample size for this study consists of 359 respondents, selected from a total population of 3,525 academic staff across the three public universities in Rivers State. A multi-stage sampling technique was employed to ensure proportional representation across the universities. Firstly, the sample was determined using the Taro Yamane formula. The resulting sample size of 359 was proportionally allocated to each university based on their staff strength. This comprises 141 respondents from the University of Port Harcourt, 174 respondents from Rivers State University, and 44 respondents from Ignatius Ajuru University of Education. The respondents were further stratified by gender, ensuring balanced representation of male and female academic staff from each institution. The instrument for data collection in this study was a researcher-designed questionnaire titled Perceived Influence of Lecturers' Attitudes Towards Artificial Intelligence on Instructional Delivery Questionnaire (PILATAIIDQ). The instrument contained items that were raised from the research questions. Responses to the instrument was structured using a summated four-point rating scale of Very High Extent (VHE), High Extent (HE), Low Extent (LE) and Very Low Extent (VLE) weighted 4-1 respectively. To ensure the face and content validity of the instrument, the draft questionnaire was submitted to three experts for thorough review.

To establish the reliability of the research instrument, a pilot study was conducted. The reliability coefficients obtained for the clusters of the instrument were 0.81, 0.77, and 0.81 respectively. A total of 359 copies of the questionnaire were administered to the respondents by the researcher. Out of the 359 questionnaires distributed, 312 copies were successfully retrieved, representing a return rate of 87%. These retrieved copies formed the basis for data analysis in the study. Among the respondents, 184 were male lecturers, while 128 were female lecturers, ensuring a fair representation across gender. The research questions were answered using mean and standard deviation while the null hypotheses were tested using the independent t-test statistical tool at 0.05 level of significance.

## **4.1 Analyses of Data and Results**

**Research Questions1:** To what extent does lecturers' skepticism towards Artificial Intelligence influence instructional delivery in public universities in Rivers State?

**Table 4.1:** Summary of Descriptive Statistics on the extent does lecturers' skepticism towards Artificial Intelligence influence instructional delivery in public universities in Rivers State

| S/N | Items                                                                                                                    | Male                |     | Female Lecturers |       | Remarks   |
|-----|--------------------------------------------------------------------------------------------------------------------------|---------------------|-----|------------------|-------|-----------|
|     |                                                                                                                          | Lecturers<br>n= 184 | SD  | SD               | n=128 |           |
| 1   | Lecturers are skeptical about the effectiveness of AI in improving instructional delivery.                               | 1                   | 0   | 1                | 0     | VLE       |
| 2   | I believe AI technologies lack the ability to fully meet the needs of a dynamic classroom.                               | 3.2                 | 0.7 | 3.2              | 0.7   | HE        |
| 3   | AI-based teaching tools are not reliable enough for widespread use in the classroom.                                     | 3.2                 | 0.7 | 3.2              | 0.7   | HE        |
| 4   | AI lacks the ability to capture the nuances of human interaction and empathy, which are crucial for teaching.            | 2.9                 | 0.5 | 2.9              | 0.5   | HE        |
| 5   | The skepticism about AI is primarily based on the perception that it cannot replace the teacher-student connection.      | 2.9                 | 0.6 | 2.8              | 0.6   | HE        |
| 6   | Skepticism about AI adoption is shared by many of my colleagues, affecting the overall implementation in our department. | 3.4                 | 0.7 | 3.3              | 0.7   | HE        |
| 7   | I am hesitant to incorporate AI into my teaching methods because of concerns about its limitations in the classroom.     | 3.5                 | 0.7 | 3.5              | 0.7   | HE        |
|     | <b>Grand mean</b>                                                                                                        | <b>2.9</b>          |     | <b>2.8</b>       |       | <b>HE</b> |

Data presented in Table 4.1 above shows the mean ratings and standard deviations of male and female lecturers on the extent to which skepticism towards Artificial Intelligence influences instructional delivery in public universities in Rivers State. The mean ratings of male lecturers for items 1 to 7 are: 1.00, 3.22, 3.21, 2.90, 2.87, 3.36, and 3.51, while the mean ratings for female lecturers are: 1.00, 3.15, 3.18, 2.89, 2.83, 3.31, and 3.47 respectively.

The specific concerns raised include skepticism about AI's effectiveness in improving instructional delivery (mean = 1.00), the belief that AI cannot meet the needs of a dynamic classroom (mean = 3.18), unreliability of AI-based teaching tools (mean = 3.20), inability of AI to replicate human empathy in teaching (mean = 2.90), and fear that AI cannot replace the teacher-student connection (mean = 2.85). Other concerns include hesitation in adopting AI due to limitations in instructional use (mean = 3.49),

and widespread skepticism among colleagues hindering implementation (mean = 3.34).

The grand means for male and female lecturers are 2.87 and 2.83, respectively, with an overall average grand mean of 2.85. This indicates that lecturers in public universities in Rivers State exhibit a high extent of skepticism towards Artificial Intelligence, which influences their instructional delivery.

**Research Questions 2:** To what extent does lecturers' enthusiasm for Artificial Intelligence influence instructional delivery in public universities in Rivers State?

**Table 4.2:** Summary of Descriptive Statistics on the extent lecturers' enthusiasm for Artificial Intelligence influence instructional delivery in public universities in Rivers State

| S/N | Items                                                                                                                          | Male                |      | Female Lecturers |       | Remarks   |
|-----|--------------------------------------------------------------------------------------------------------------------------------|---------------------|------|------------------|-------|-----------|
|     |                                                                                                                                | Lecturers<br>n= 184 | SD   | SD               | n=128 |           |
| 8   | I am eager to explore and integrate AI tools to enhance my instructional methods.                                              | 2.29                | 1.21 | 2.36             | 1.3   | LE        |
| 9   | I believe AI can be a useful tool for personalized learning and improving student outcomes.                                    | 3.27                | 0.65 | 3.3              | 0.64  | HE        |
| 10  | AI provides me with an opportunity to innovate and experiment with new teaching techniques.                                    | 3.32                | 0.67 | 3.33             | 0.64  | HE        |
| 11  | Enthusiasm for AI is growing among lecturers in my department, and it positively impacts the adoption of new teaching methods. | 3.24                | 0.58 | 3.3              | 0.62  | HE        |
| 12  | I actively seek training and professional development to improve my ability to use AI in teaching.                             | 3.15                | 0.66 | 3.17             | 0.65  | HE        |
| 13  | I have observed positive changes in student engagement and performance when AI tools are used in the classroom.                | 3.13                | 0.69 | 3.1              | 0.75  | HE        |
| 14  | I feel motivated to redesign my course content to incorporate AI-based instructional tools..                                   | 3.1                 | 0.64 | 3.06             | 0.72  | HE        |
|     | <b>Grand mean</b>                                                                                                              | <b>3.07</b>         |      | <b>3.09</b>      |       | <b>HE</b> |

Data presented in Table 4.2 above shows the mean ratings and standard deviations of male and female lecturers on the extent to

which enthusiasm for Artificial Intelligence influences instructional delivery in public universities in Rivers State. The mean ratings of male lecturers for items 8 to 14 are: 2.29, 3.27, 3.32, 3.24, 3.15, 3.13, and 3.10, while the mean ratings for female lecturers are: 2.36, 3.30, 3.33, 3.30, 3.17, 3.10, and 3.06 respectively.

The specific influences highlighted include lecturers' eagerness to explore and integrate AI tools into teaching (mean = 2.33), belief in AI's role in personalized learning and student improvement (mean = 3.29), opportunity to innovate through AI (mean = 3.33), departmental enthusiasm for AI adoption (mean = 3.27), active pursuit of AI training (mean = 3.16), observed improvement in student engagement (mean = 3.12), and motivation to redesign course content to include AI (mean = 3.08). Furthermore, the grand

means for male and female lecturers are 3.07 and 3.09, respectively, with an overall average grand mean of 3.08. This indicates that lecturers in public universities in Rivers State generally exhibit a high extent of enthusiasm for Artificial Intelligence, which positively influences their instructional delivery.

**Research Questions 3:** To what extent does fear of job displacement as a result of Artificial Intelligence influence lecturers' instructional delivery in public universities in Rivers State?

**Table 4.3:** Summary of Descriptive Statistics on the extent fear of job displacement as a result of Artificial Intelligence influence lecturers' instructional delivery in public universities in Rivers State

| S/N               | Items                                                                                                                          | Male                |     | Female Lecturers |           | Remarks   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|------------------|-----------|-----------|
|                   |                                                                                                                                | Lecturers<br>n= 184 | SD  | $\bar{X}$        | $\bar{X}$ |           |
| 15                | I am concerned that the widespread use of AI in teaching will make my role as a lecturer obsolete.                             | 3.5                 | 0.6 | 3.5              | 0.7       | HE        |
| 16                | The fear of job displacement due to AI is a significant barrier to adopting AI tools in my teaching.                           | 3.6                 | 0.6 | 3.5              | 0.6       | HE        |
| 17                | I worry that AI's increasing use in education will lead to a reduction in faculty positions at universities.                   | 3.4                 | 0.7 | 3.3              | 0.7       | HE        |
| 18                | I believe that AI may replace certain aspects of my job, such as grading or content delivery, leading to job insecurity.       | 3.5                 | 0.6 | 3.4              | 0.6       | HE        |
| 19                | The fear of job loss has led me to resist adopting AI technologies in my teaching.                                             | 3.5                 | 0.6 | 3.4              | 0.6       | HE        |
| 20                | I feel that universities may prefer AI tools over hiring more teaching staff, especially in resource-constrained environments. | 3.6                 | 0.6 | 3.6              | 0.6       | HE        |
| 21                | Concerns about AI replacing human interaction in the classroom make me reluctant to use it in my instructional delivery.       | 3.1                 | 0.7 | 3.1              | 0.8       | HE        |
| <b>Grand mean</b> |                                                                                                                                | <b>3.5</b>          |     | <b>3.4</b>       |           | <b>HE</b> |

Data presented in Table 4.3 above shows the mean ratings and standard deviations of male and female lecturers on the extent to which fear of job displacement due to Artificial Intelligence influences instructional delivery in public universities in Rivers State. The mean ratings of male lecturers for items 15 to 21 are: 3.52, 3.56, 3.36, 3.46, 3.49, 3.63, and 3.12, while the mean ratings for female lecturers are: 3.54, 3.53, 3.30, 3.42, 3.42, 3.60, and 3.10 respectively.

The table reveals that both male and female lecturers expressed high concern about the potential of AI to displace their roles, including the fear that AI may replace grading, reduce faculty positions, or be preferred over human staff in resource-limited situations. The responses also indicate reluctance in adopting AI technologies due to job insecurity and concerns about loss of human interaction in instructional delivery. The grand means for

male and female lecturers are 3.45 and 3.37 respectively, with an overall average grand mean of 3.41. This implies that there is a high extent of fear of job displacement as a result of AI among lecturers, and this fear significantly influences their instructional delivery in public universities in Rivers State.

### Test of Hypotheses

1: There is no significant difference in the mean ratings of male and female lecturers on the extent skepticism towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

**Table 4:** t-test summary showing significant difference in the mean ratings of male and female lecturers on the extent skepticism towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

| Gender           | N   | Mean | SD   | Df  | t-cal  | t-crit | $\alpha$ | Remarks  |
|------------------|-----|------|------|-----|--------|--------|----------|----------|
| Male Lecturers   | 184 | 2.87 | 0.37 | 310 | 0.5303 | 1.93   | 0.05     | Accepted |
| Female Lecturers | 128 | 2.83 | 0.35 |     |        |        |          |          |

Table 4 presents the independent samples t-test analysis examining the difference in the mean ratings of male and female lecturers on the extent to which skepticism towards Artificial Intelligence influences instructional delivery in public universities in Rivers State. The mean rating for male lecturers is 2.87 with a standard deviation of 0.37, while the mean rating for female lecturers is 2.83 with a standard deviation of 0.35.

The calculated t-value is 0.5303 with a degree of freedom (df) of 310, and the critical t-value at 0.05 level of significance is 1.93. Since the calculated t-value (0.5303) is less than the critical t-value (1.93), and the p-value ( $\alpha = 0.05$ ) is greater than the level of significance, the result is not statistically significant. This confirms that the observed difference in the mean ratings of male and female

lecturers is likely due to chance. Therefore, the null hypothesis is accepted, indicating that there is no significant difference in the mean ratings of male and female lecturers on the extent to which skepticism towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

2: There is no significant difference in the mean ratings of male and female lecturers on the extent enthusiasm towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

**Table 5:** t-test summary showing significant difference in the mean ratings of male and female lecturers on the extent enthusiasm towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

| Gender           | N   | Mean | SD   | Df  | t-cal | t-crit | $\alpha$ | Remarks  |
|------------------|-----|------|------|-----|-------|--------|----------|----------|
| Male Lecturers   | 184 | 3.07 | 0.68 | 310 | 0.273 | 1.93   | 0.05     | Accepted |
| Female Lecturers | 128 | 3.09 | 0.68 |     |       |        |          |          |

Table 5 presents the independent samples t-test analysis examining the difference in the mean ratings of male and female lecturers on the extent to which enthusiasm towards Artificial Intelligence influences instructional delivery in public universities in Rivers State. The mean rating for male lecturers is 3.07 with a standard deviation of 0.68, while the mean rating for female lecturers is 3.09 with a standard deviation of 0.68. The calculated t-value is 0.273 with a degree of freedom (df) of 310, and the critical t-value at the 0.05 level of significance is 1.93. Since the calculated t-value (0.273) is less than the critical t-value (1.93), and the p-value ( $\alpha = 0.05$ ) is greater than the level of significance, the result is not statistically significant. This indicates that the observed difference in the mean ratings between male and female lecturers is not meaningful and may have occurred by chance. Therefore, the null hypothesis is accepted, showing that there is no significant

| Gender           | N   | Mean | SD   | Df  | t-cal | t-crit | $\alpha$ | Remarks  |
|------------------|-----|------|------|-----|-------|--------|----------|----------|
| Male Lecturers   | 184 | 3.45 | 0.61 | 310 | 1.191 | 1.93   | 0.05     | Accepted |
| Female Lecturers | 128 | 3.37 | 0.64 |     |       |        |          |          |

Table 6 presents the independent samples t-test analysis examining the difference in the mean ratings of male and female lecturers on the extent to which fear of job displacement due to Artificial Intelligence influences instructional delivery in public universities in Rivers State. The mean rating for male lecturers is 3.45 with a standard deviation of 0.61, while the mean rating for female lecturers is 3.37 with a standard deviation of 0.64. The calculated t-value is 1.191 with a degree of freedom (df) of 310, and the critical t-value at the 0.05 level of significance is 1.93. Since the calculated t-value (1.191) is less than the critical t-value (1.93), and the p-value ( $\alpha = 0.05$ ) is greater than the level of significance, the result is not statistically significant.

This confirms that the observed difference in the mean ratings between male and female lecturers is not significant and may have occurred by chance. Therefore, the null hypothesis is accepted, indicating that there is no significant difference in the mean ratings of male and female lecturers on the extent to which fear of job displacement due to Artificial Intelligence influences instructional delivery in public universities in Rivers State.

## Discussion of Findings

### Extent Skepticism Influences Instructional Delivery among Lecturers in Public Universities in Rivers State

The extent to which skepticism influences instructional delivery among lecturers in public universities in Rivers State was analyzed, and the findings on Table 4.1 revealed that skepticism significantly impacts instructional practices, with a grand mean score of 2.85 from responses by male and female lecturers across the University of Port Harcourt, Rivers State University, and Ignatius Ajuru University of Education. This aligns with the assertion of Wokoma and Ezeanya (2022), who emphasized that reluctance to embrace technological innovations, especially artificial intelligence (AI), often stems from uncertainty about reliability, ethical concerns, and fears of diminished educator relevance, which consequently affects the effective delivery of instruction.

Furthermore, the hypothesis tested on Table 6 showed that there is no significant difference in the mean scores of male and female lecturers regarding the extent to which skepticism influences instructional delivery, with a calculated t-value of 0.5303 falling below the critical value of 1.96 at 0.05 significance level. This implies that gender does not play a significant role in determining the level of skepticism among lecturers. This supports the findings of Ekeocha and Abang (2023), who found that skepticism towards emerging educational technologies is generally rooted in institutional culture and past experiences rather than demographic factors like gender.

Additionally, the study corroborates the work of Uduak and Okpara (2023), who argued that academic staff across Nigerian universities often exhibit cautious attitudes toward the integration of AI tools due to inadequate digital infrastructure, lack of training, and fear of pedagogical disruption. If such skepticism is not addressed through strategic awareness and capacity-building

difference in the mean ratings of male and female lecturers on the extent to which enthusiasm towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

3. There is no significant difference in the mean ratings of male and female lecturers on the extent fear of job displacement due to Artificial Intelligence influences instructional delivery in public universities in Rivers State.

**Table 6:** t-test summary showing significant difference in the mean ratings of male and female lecturers on the extent enthusiasm towards Artificial Intelligence influences instructional delivery in public universities in Rivers State.

initiatives, it may hinder innovation and diminish the quality of instructional delivery. These findings underscore the importance of institutional commitment to fostering digital confidence among lecturers by providing ongoing professional development, showcasing successful AI use cases, and integrating AI ethically and supportively into teaching environments. Strong administrative strategies like performance evaluations and research support have been shown to enhance institutional effectiveness and could provision a supportive foundation for AI adoption (Nwuke & Annette, 2024). Doing so will promote instructional effectiveness and ensure public universities in Rivers State remain competitive and relevant in a digitally evolving educational landscape.

### Extent Lecturers' Enthusiasm Towards Artificial Intelligence Influence Instructional Delivery in Public Universities in Rivers State

The results presented in Table 4.2 revealed that male and female lecturers generally agreed to a high extent that enthusiasm for Artificial Intelligence (AI) influences instructional delivery in public universities in Rivers State. This was reflected in the grand mean scores of 3.07 and 3.09 for male and female lecturers respectively, both indicating a high extent of influence. Notably, both groups expressed strong agreement that AI tools offer opportunities for innovation, personalized learning, enhanced student outcomes, and increased motivation to redesign course content. The lowest-rated item across both groups was eagerness to explore and integrate AI tools (mean = 2.33), which still fell within the moderate range, suggesting room for improvement in proactive AI adoption.

The corresponding hypothesis testing presented in Table 4.7 showed that there was no significant difference in the mean ratings of male and female lecturers regarding how enthusiasm towards AI influences instructional delivery. The t-calculated value was 0.273, which is less than the t-critical value of 1.93 at the 0.05 significance level. Thus, the null hypothesis was accepted, confirming that gender does not significantly affect lecturers' enthusiasm for AI integration in teaching.

These findings align with the report of Okonwo (2022) who observed that both male and female academic staff in tertiary institutions showed a growing interest in adopting AI tools, driven by their perceived usefulness in enhancing teaching efficiency and learner engagement. Similarly, Ayegba (2023) noted that lecturers' enthusiasm for AI is primarily fueled by the drive to improve pedagogical outcomes and student-centered learning experiences, regardless of gender.

However, while the findings suggest no gender disparity, they highlight the need to further cultivate lecturers' intrinsic motivation to explore AI tools. Enthusiasm alone may not guarantee optimal use unless backed by structured training and institutional support. This resonates with Chinelo (2023), who stressed that enthusiasm must be matched with access to capacity-building opportunities and enabling infrastructure for sustained AI adoption in Nigerian universities. In summary, lecturers in public universities in Rivers State demonstrate a high level of enthusiasm for AI in instructional

delivery, and this enthusiasm does not significantly differ by gender. Yet, sustained efforts in training, policy support, and practical exposure remain essential to translate enthusiasm into consistent classroom innovation.

### **Extent Fear of Job Displacement as a Result of Artificial Intelligence Influence Lecturers' Instructional Delivery in Public Universities in Rivers State**

The finding in Table 4.8 indicates that there is no significant difference in the mean ratings of male and female lecturers on the extent to which fear of job displacement due to Artificial Intelligence influences instructional delivery in public universities in Rivers State. This conclusion is based on the calculated t-value (1.191), which is less than the critical t-value (1.93), and the p-value being greater than the 0.05 significance level. Therefore, the null hypothesis is upheld.

This result implies that both male and female lecturers share similar levels of concern about the risk of AI displacing their instructional roles, regardless of gender. The earlier descriptive result presented in Table 4.3 supports this conclusion, where the grand mean ratings of 3.45 for male lecturers and 3.37 for female lecturers both indicate a high extent of fear concerning job displacement. The concerns raised by respondents ranging from AI replacing aspects like grading and content delivery to universities preferring AI tools over human staff were consistently rated highly by both groups.

This finding aligns with the observations of Omoduemi (2023), who noted that many Nigerian lecturers view the rise of AI with caution, perceiving it as a potential threat to job security rather than an enhancement to instructional delivery. Similarly, Chinyere (2022) emphasized that while digital tools offer numerous benefits, fears surrounding automation and redundancy continue to shape staff attitudes towards full AI integration. Therefore, the study confirms that the fear of job displacement as a result of AI significantly influences lecturers' instructional practices, and this perception does not significantly vary between male and female lecturers in public universities in Rivers State.

## **Conclusion**

This study revealed that key factors such as the availability of AI infrastructure, lecturers' competence in Artificial Intelligence, institutional support, access to AI tools, lecturers' attitude, and resistance to change all to a high extent influence instructional delivery in public universities in Rivers State. The findings indicate that effective integration of Artificial Intelligence into teaching practices requires a supportive institutional framework, regular training, availability of relevant digital tools, and a shift in mindset among academic staff. Therefore, addressing infrastructural gaps, building digital competencies, and reducing resistance to change are critical steps towards enhancing instructional delivery through AI in public universities in Rivers State.

## **Recommendations**

Based on the findings of the study, the following recommendations were made:

1. Public universities should organize structured awareness campaigns to address skepticism towards Artificial Intelligence. These campaigns should clarify misconceptions, promote trust in AI technologies, and highlight their benefits in improving instructional delivery.
2. Institutions should invest in consistent AI-focused training programmes to sustain and deepen the enthusiasm of lecturers. These programmes should emphasize practical applications of AI in teaching, curriculum development, assessment, and student engagement.
3. University management should develop and communicate clear policies that reassure academic staff about the complementary role of AI. These policies should emphasize that AI is designed to support, not

replace, human lecturers, thereby reducing fear of job displacement.

## **REFERENCES**

1. Adebajo, L. (2021). Leveraging AI-based tools for lesson planning and assessment in Nigerian universities. *Journal of Digital Education and Innovation*, 13(2), 74–88.
2. Akah, F. (2021). Skepticism and technology adoption in higher education: A critical perspective on artificial intelligence in Nigerian universities. *Journal of Educational Technology Research*, 9(2), 45–57.
3. Chika, P. (2022). Fear-driven resistance and its effect on technology adoption in higher education. *Journal of Higher Education Research*, 16(3), 115–129.
4. Chukwu, D. (2020). Challenges and opportunities of AI adoption among lecturers in Nigerian public universities. *Nigerian Journal of Educational Innovation*, 15(1), 33–48.
5. Dabor, M. (2021). Infrastructure challenges and the adoption of AI in Nigerian public universities. *International Journal of Educational Technology Studies*, 9(1), 33–47.
6. Diri, B. (2023). AI as a solution to overcrowded classrooms and inadequate facilities in Nigerian higher education. *African Journal of Educational Development*, 19(1), 55–69.
7. Ejimabo, K. (2021). Automation anxiety and lecturers' attitudes towards AI in education. *Journal of Contemporary Issues in Education*, 14(2), 89–103.
8. Emejuru, V. (2020). Lecturers' skepticism and digital transformation in public universities. *Journal of Educational Change and Innovation*, 8(3), 40–52.
9. Eneanya, J. (2022). Perceptions of job security and the adoption of artificial intelligence in education. *African Journal of Educational Management*, 18(3), 101–115.
10. Enyindah, R. (2020). Technology enthusiasm and innovation adoption among university lecturers: Implications for AI integration. *International Journal of Digital Learning*, 12(4), 67–79.
11. Ibelegbu, T. (2020). Enthusiasm for AI and its role in driving pedagogical innovation. *Journal of Instructional Practice*, 11(4), 62–78.
12. Ibiamu, S. (2023). Lecturers' readiness for AI integration in instructional delivery in Nigerian universities. *Journal of Contemporary Educational Studies*, 20(1), 88–102.
13. Ibiamu, S. (2023). Lecturers' readiness for AI integration in instructional delivery in Nigerian universities. *Journal of Contemporary Educational Studies*, 20(1), 88–102.

14. Ikwuano, E. (2022). Building a culture of technological acceptance in higher education. *International Journal of Learning Technologies*, 10(3), 91–108.
15. Ikwut, J. (2020). Pedagogical adaptability and creativity in Nigerian university classrooms. *Journal of Curriculum and Teaching*, 7(2), 27–39.
16. Iwuamadi, C. (2020). Job security perceptions and lecturers' motivation for technology adoption. *Journal of Workplace Psychology and Education*, 12(1), 45–61.
17. Nwuke, T. J., & Nwanyanwu, L. (2022). Line and staff organizational structure: Exploring the potentials of Zoom cloud meeting for online instructional delivery amidst unprecedented events in Nigeria. *International Journal of Education Leadership and Development Research*, 1(1), 1–14. <https://doi.org/10.5281/zenodo.7960015>
18. Nwuke, T. J., & Yellowe A. N., (2024). Institutional management practices for administrative effectiveness in public universities in Rivers State. *International Journal of Social Sciences*, 7(1), 89–104. <https://doi.org/10.46654/IJSS.7312.2024>
19. Nwuke, T. J., & Yellowe A. N., (2025). Utilization of artificial intelligence in school supervision for effective administration in public secondary schools in Rivers State, Nigeria. *International Journal of Educational Management, Rivers State University*, 1(1), 318–334.
20. Obasi, N. (2019). Instructional delivery and curriculum alignment in Nigerian public universities. *Journal of Higher Education Pedagogy*, 6(1), 14–28.
21. Ogon, R. (2022). Human-centered teaching and the limits of artificial intelligence in education. *Journal of Education and Society*, 15(2), 50–64.
22. Okolo, A. (2020). Employment insecurity and technological innovations in Nigerian universities. *Journal of Education Policy and Administration*, 9(3), 120–133.
23. Okonkwo, C. (2022). Artificial intelligence and its applications in education: Emerging trends and prospects. *Journal of Artificial Intelligence in Education*, 11(3), 21–35.
24. Okonkwo, C. (2022). Artificial intelligence and its applications in education: Emerging trends and prospects. *Journal of Artificial Intelligence in Education*, 11(3), 21–35.
25. Okoroma, J. (2021). Emotional depth in education and the limitations of AI. *Journal of Humanities and Education*, 10(2), 79–94.
26. Omodara, S. (2022). Lecturers as catalysts for digital transformation: The case of AI adoption. *Journal of Digital Pedagogy*, 14(1), 58–72.
27. Omowunmi, K. (2021). Interactive teaching strategies and student-centered learning in Nigerian universities. *Journal of Innovative Teaching and Learning*, 13(3), 33–48.
28. Osuji, C. U. (2023). Influence of digital learning platforms on academic performance of the students in National Open University of Nigeria, Port Harcourt Centre. *International Journal of Social Science and Management Studies*, 5(2), 44–58. <https://rajournals.net/index.php/ijssms/article/view/118>
29. Sulaimon, K. (2021). University lecturers' attitudes towards AI integration in teaching and learning in Nigeria. *Journal of Instructional Technology and Teacher Education*, 14(2), 55–70.
30. Zakka, Y. (2022). Instructional engagement and the use of digital tools in Nigerian universities. *Journal of Educational Practice and Innovation*, 8(4), 70–83.